首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1075篇
  免费   29篇
  国内免费   9篇
安全科学   71篇
废物处理   37篇
环保管理   291篇
综合类   83篇
基础理论   309篇
环境理论   3篇
污染及防治   188篇
评价与监测   84篇
社会与环境   42篇
灾害及防治   5篇
  2023年   10篇
  2022年   12篇
  2021年   15篇
  2020年   16篇
  2019年   12篇
  2018年   25篇
  2017年   31篇
  2016年   41篇
  2015年   26篇
  2014年   33篇
  2013年   73篇
  2012年   52篇
  2011年   74篇
  2010年   49篇
  2009年   42篇
  2008年   61篇
  2007年   67篇
  2006年   60篇
  2005年   41篇
  2004年   44篇
  2003年   46篇
  2002年   35篇
  2001年   21篇
  2000年   12篇
  1999年   20篇
  1998年   17篇
  1997年   15篇
  1996年   20篇
  1995年   22篇
  1994年   15篇
  1993年   12篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
  1968年   1篇
  1938年   1篇
排序方式: 共有1113条查询结果,搜索用时 31 毫秒
101.
102.
Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.  相似文献   
103.
Phytochelatins (PCs) were determined in the wild plants, focusing on their relationship with the levels of heavy metals and humic substances (HS) in soil. Ricinus communis and Tithonia diversifolia were collected from several sites in Guanajuato city (Mexico), which had long been the silver and gold mining center. The analysis of PCs in root extracts was carried out by liquid chromatography (derivatization with monobromobimane). Total Ag, Cd, Cu and Pb in plant roots and in soil samples, as well as soil HS were determined. The association of metals with HS in soils was evaluated by size exclusion chromatography (SEC) with UV and ICP-MS detection. The results obtained revealed the induction of PCs in R. communis but not in T. diversifolia. The levels of Cd and Pb in plant roots presented strong positive correlation with PC-2 (r = 0.9395, p = 0.005; r = 0.9573, p = 0.003, respectively), indicating that these two metals promote PCs induction in R. communis. On the other hand, the inverse correlation was found between soil HS and metal levels in roots of R. communis (Cu > Pb > Cd > Ag), in agreement with the decreasing affinity of these metals to HS. Importantly, the inverse correlation between soil HS and plant PC-2 was observed (r = −0.7825, p = 0.066). These results suggest that metals strongly bound to HS could be less bioavailable to plants, which in turn would limit their role in the induction of PCs. Indeed, the SEC elution profiles showed Pb but not Cd association with HS and the correlation between metal in soil and PC-2 in plant was statistically significant only for Cd (r = 0.7857, p = 0.064). Based on these results it is proposed that the role of heavy metals in PCs induction would depend on their uptake by R. communis, which apparently is controlled by the association of metals with soil HS. This work provides further evidence on the role of environmental conditions in the accumulation of heavy metals and phytochelatin production in plants.  相似文献   
104.
Soil and topical tests were employed to investigate the effect of two N-nitroso metabolites of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) on earthworm reproduction. The lowest observed effect concentration (LOEC) for cocoon production and hatching was 50mg/kg for both hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in soil. MNX and TNX also significantly affected cocoon hatching in soil (p<0.001) and in topical tests (p=0.001). The LOECs for cocoon hatching were 1 and 10mg/kg for MNX and TNX in soil, respectively, and 10mg/L in the topical test. Greater than 100mg/kg MNX and TNX completely inhibited cocoon hatching. In soil, the EC20 values for MNX were 8.7 and 8.8mg/kg for cocoon and juvenile production, respectively, compared to 9.2 and 9.1mg/kg for TNX, respectively. The EC20 values for the total number of cocoon hatchlings were 3.1 and 4.7mg/kg for MNX and TNX, respectively, in soil and 4.5 and 3.1mg/L in the topical test. Both MNX and TNX inhibited cocoon production and hatching, suggesting that they may have a negative affect on soil ecosystems at contaminated sites.  相似文献   
105.
106.
Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor(MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment of biofilms at low transmembrane pressure(TMP). Clustering of the communities based on the Bray–Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata,Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.  相似文献   
107.
Ten ways remote sensing can contribute to conservation   总被引:1,自引:0,他引:1       下载免费PDF全文
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain‐referral survey. We then used a workshop‐based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real‐time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing‐derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?  相似文献   
108.
Sampling of a population is frequently required to understand trends and patterns in natural resource management because financial and time constraints preclude a complete census. A rigorous probability-based survey design specifies where to sample so that inferences from the sample apply to the entire population. Probability survey designs should be used in natural resource and environmental management situations because they provide the mathematical foundation for statistical inference. Development of long-term monitoring designs demand survey designs that achieve statistical rigor and are efficient but remain flexible to inevitable logistical or practical constraints during field data collection. Here we describe an approach to probability-based survey design, called the Reversed Randomized Quadrant-Recursive Raster, based on the concept of spatially balanced sampling and implemented in a geographic information system. This provides environmental managers a practical tool to generate flexible and efficient survey designs for natural resource applications. Factors commonly used to modify sampling intensity, such as categories, gradients, or accessibility, can be readily incorporated into the spatially balanced sample design.  相似文献   
109.
Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.  相似文献   
110.
Optimizing high-value energy efficiency and renewable energy in multi-scale systems that include buildings provides energy savings, energy reliability, indoor health and power quality, among other benefits. These benefits are not easily accounted for in traditional energy budget analysis, and their monetization is not included in typical cost-benefit calculations. Popular belief is that higher use of energy efficiency reduces return on investment (ROI) and that inclusion of renewable energy further reduces ROI. In fact, optimization of higher degrees of energy efficiency with on-site renewable has significantly greater positive economics. This is due to several factors including the aging electric grid—statistically having more and longer electric outages—and extremely poor electric power quality (electric surges, sags and transients) that wreaks havoc on digital equipment. Additionally, weather patterns are becoming more intense, stressing the wired electric system and fuel pipelines. As costs for energy efficiency and renewable energy are reduced and as these systems become more standardized and modular, it is more practical to begin utilizing these advances to increase operational resilience and make energy costs more predictable over longer periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号